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CALCULATION OF SCATTERING IN RADIATIVE HEAT-EXCHANGE PROCESSES

Yu. A. Popov
Inzhenerno-Fizicheskii Zhurnal,

UDC 536.3

The Bubnov-Galerkin method is used to sclve the problem of the pas-
sage of isotropic radiation through a scattering layer with a spherical

scattering indicatrix and the problem of radiation from a layer exhib-
iting constant temperature,

1. In problems of radiative exchange in dust media,
scattering plays an important role. The complexity of
calculating the scattering involves the difficulties re-
lated to calculating the scattering indicatrix (curve),
the attenuation factor, and the scattering coefficient
for the particles of the medium, and the difficulties in-
volved in solving the equations of transport with an ar-
bitrary scattering curve. Even for spherical curves
the existing analytical formulas, based onthe Schwarz-
schild-Schuster and Eddington approximations, are not
sufficiently accurate. Methods have now been devel-
oped which make it possible to solve the problems of
transport theory with virtually any degree of accuracy
[1,2]. However, to obtain a numerical solution with un-
limited accuracy requires considerable work on the
part of the programmers and much machine time,
whereas the actual accuracy of these calculations, ap-
plied to specific conditions, frequently proves to be
low because of the coarse approximation of the scatter-
ing curve or because of marked geometric simplifica-
tion. Until now it has therefore been important to find
methods of calculation that were valid for a specific
interval of optical thicknesses and for a specific inter-
val of particle diameters.

2. As demonstrated in [3], if the particle radius a
is sufficiently large

2na > 10,

p:

the attenuation factor, the scattering coefficient, and
the scattering curve, calculated by the methods of
geometric optics, with consideration of classical
Fraunhofer diffraction, are ingood agreement with the
rigorous Mie theory [4], if we average over some in-
terval of particle diameters. The portion of the radia-
tion scattered by the particles as a result of classical
diffraction is equal fo 1 in units of ﬁaz, and amounts to
half the attenuation factor for the particle, calculated
by the method of geometric optics, with consideration
of diffraction. This portion is markedly extended for-
ward. Virtually all the scattered light is concentrated
within a cone exhibiting a half-angle of 1/p [4]. ¥ in
passing through the layer a single quantum of radia-
tion is scattered n times on the average, its deflec-
tion from its original direction as a result of diffrac-
tion from the medium particles involves an angle of
order n/p, if nis small. However, in terms of order
of magnitude n is equal to the optical layer thickness
% and therefore if §/p > 1, the diffracted light may be
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held to coincide in direction with the incident light. If
the absorption index of the particle substance satisfies
the inequality » > A/ra (where A is the radiation wave-
length), the light refracted by the particles can be neg-
lected. The scattering curve for the reflected light,
for large reflecting particles, with an increase in the
complex refractive index, tends to the spherical,
while the coefficient of reflection can be calculated on
the basis of geometric optics [5]. Thus, for large ab-
sorbing particles and for optical thicknesses not too
large, the problem reduces to the solution of the equa-
tions of transport from a spherical scattering curve.
3. Let us examine the transport equation for a flat
layer for the case in which intensity is independent of
the azimuth angle and the scattering curve is spheri-
cal:

—+1 é—j!(ru i@ @

with the boundary conditions
T, w>0)=0, J(z, p<0)=0. (2)
Equation (1) with boundary conditions (2) can be

written in integral form [1]:

To
»

J Elt—v|B(x)dt +j(1), (3)

0

B(t)= ~;—

where B(T) is the right-hand member of Eq. (1); E; is
the integroexponential function of 1-st order. Subse-
quently, E, will denote the integroexponential func-
tion of n-th order. We will solve (3) with the 6-like
source function j = 6(7—T7y) by the Bubnov-Galerkin
method [6]. The solution of the equation for the Green
function

To
G(r, 7)) = ;_S' Eilt—1]G@E, vdt +8(t—1,)

0

is sought in the form of the series

N
G= ¥ a,t (4)

m=0

If we limit ourselves to only a single term in the ex-
pansion, we will obtain
, |
a,= p ) (5)
(I—r) 7+ EEG(TO)
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where g4(g) = 1 — 2E4(7g) isthedimensionless radiation described by the expression gy + a7 The radiation in-
energy of a uniformly heated, nonscattering layer of op- tensity is expressed in terms of the function B(7):
tical thickness 7.

T—1

] B(v)dv,
u .

Y
: 1
Table 1 I, p>0= S -— exp [—-
Energy of isotropic radiation passing through a vt
purely scattering layer

I, p <0) = j 1 exp [— 7 } B(t)dt', (8)
m N

Results taken After Adri- | Second Galer-; Second Ivon
d |k ' ima-
| Tom(s] | cmoysnd | nspprosi | spproxima g
0 1.0000 1.0000 | 1.0000 10000 while the energy passing beyond the boundary 7 = % is
0.1 0.9103 0.9159 0.9154 0.9127 expressed by
0.3 0.7960 0.7941 0.7936 0.7878 '
82 (O)Z;ggg 0.(758?1 8;844 0.6989% LA
. . 0.6057 .6048 0.6013 = —_ Ydt'
1.0 | 05523 0.5543 0.5534 0.5510 e= [ E(n—7)B()dT. ©
2.0 0.3909 | 0.3905 0.3901 0.3896 0
3.0 0.3016 0.3019 0.3006
10.0 0.1209 0.1168 0.1170 4. Let us examine the passage of isotropic radia-
tion of unit energy through the layer.
If in expansion (4) we consider two terms, for the Equation (1) with boundary conditions (2) for j =
coefficients g and a} we obtain the expressions = rE4(7) describes the scattered radiation. We will not

carry out the calculations in second approximation of
the method because they are analogous to the calcula-
tions of Kuznetsov {7] who sought the solution for func-
tions B also in the form ay + a;7 for r = 1. The prob-
5% [(1._. N+ Lso (-;o)]} x lem of the passage of isotropic radiation through a

2 2 purely scattering layer has been solved by many au-
thors; this is because the problem of equilibrium heat

a={| 5" e |-

r

X {[(1-f)7“+—;- 80("0)} {1_‘ T+ r () —

1-2 r -1 ztr
—_ 0 — —_ 1
T [(l )T+ 2 50(70)]}} s (6")

a;=(ro/2—n)/{[‘“?” t%-i-'cCP(To)]—

a5

- [(1~r) L eom)]}. ©)

Here ¢(%) denotes the function

(i) = lf___H — 1y Ey (9 — Ey (1) }

Energy of isotropic radiation through layer
as function of optical layer thickness (r =1
is the spherical indicatrix): 1) exact solu-
tion; 2) Ivon's second approximation(circles);
To . s .
B(r)= 5' j@)Gr, m)dv,= ao+al17+---_ (D 3) Schwarzschild-Schuster approximation.

0

Knowing the Green function G(7, 7'), we can solve the
problem with any source function in the form

Here it is natural that the second approximation of the exchange between a layer without scattering (or with
method will depend on whether the function B(7) is well a spherical scattering curve) and black walls [8] or, as

Table 2

Dimensionless energy of layer radiation and energy of isotropic
radiation as functions of the optical layer thickness %

Dimensionless energy of layer radiation Energy of isotropic radiation passing through
(r=0.5) the layer (r = 0.5)
Second Ivon |Schwarzschild-| First Galerkin First Galerkin [Schwarzschild-| Second Ivon
7o | approxima- |Schuster ap- approxima- | 1, approxima- (Schuster ap- approxima-
tion proximation tion tion proximation tion

0.1 0.0929 0.094 0.0911 0.1 0.8665 0.861 0.871
0.2 0.1733 0.181 0.170 0.2 0.7589 0.740 0.767
0.5] 0.3593 0.398 0.357 0.5| 0.5300 0.482 0.543
0.8 0.4897 0.537 0.492 0.8 0.3813 0.320 0.398
1.0 0.5561 0.603 0.562 1.0 0.3083 0.237 0.328
1.6 0.6734 0.707 0.684 1.5 0.1830 0.112 0.214
2.0 0.7445 0.768 0.762 2.0 0.1081 0.058 0.150
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can be demonstrated, walls that are gray but iso-
tropically reflecting, reduces to the first-cited prob-
lem.

Hottel [8] derived exact results for the energy
passing through the layer, solving the problem on a
computer. Table 1 shows a comparison of the results
for the magnitude of the passing energy, calculated in
second approximation of the Bubnov-Galerkin method,
with the exact calculation of Hottel, as well as with
the Adrianov and Polyak calculations [9]. The compari-
son shows excellent agreement for the second approxi-
mation of the Bubnov-Galerkin method.

For thin layers we can limit ourselves to only a
single term in the expansion of function B and use the
first approximation. For the radiation energy passing
through the layer we have the formula

83 (to)

(I—r) 1y 4 —;_EO(TO).

’
gy = 2E; (7o) + — (10)

When r = 1 this formula transforms to the familiar [9]
142E5(m)

8y =
2

In first approximation of the Galerkin method it is
also not difficult to derive a formula for the dimension-
less energy of radiation for a uniformly heated layer

(1_“’) '5030("70)
(1—n 7+ ~;~ &0 (o)

€rd= (11)

Of course, when r =0 this formula is not valid for
thick layers.

5. Table 2 shows a comparison of calculations,
from (10) and (11), with the solution of the Schwarz—
schild-Schuster method for r = 0.5, as wellas with the
second approximation of the Ivon method [2]. We con-
ducted the calculation in accordance with the Ivon meth-
od on an M-3M computer.

Comparison (see figure) of the exact solution (r =
=1 and r = 0) for the energy of isotropic radiation
passing through the layer with the second Ivon approxi-
mation, as well as with the Schwarzschild~-Schuster
method, which is a first approximation of the Ivon
method for the spherical scattering curve, shows that
the second Ivon approximation is fairly exact. We see
from Table 2 that for small optical thicknesses the
calculation according to (10) and (11) is more exact
than the calculation according to the Schwarzschild-
Schuster method. K the layer is not thin, the calcula-
tion of the radiation that passes through the layer can
be carried out in second approximation of the Galer-
kin method. To evaluate the accuracy and to refine the
solution we can employ the method of iterations, tak-
ing only a single iteration.

6. Thus, if the first Galerkin approximationis taken
as the zero approximation in the method of iterations
for the problem of layer radiation, for the energy of ra~
diation from thelayer we derive the following formula:
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r{l—nr,

(1—r)t+ ”%‘ & (7o)

X

€rad == €0 (t) (1—r) +

X [50 (To) — Gy (tg) — Gig (To)} , (12)

where
To
Gy (T0) = SEZ(TO-‘T’)EQ(T')dT’1
0

Gan (1) = | E3(v)d7".
0
The last integral can be calculated approximately by
using the approximate representation of the function
Ez(T):

E(W~= 5 [expl— @+ V3)1]+

1z
2

+exp [—3—V3) 1l (13)

Formula (13) is derived in the following manner. Since

1

E@= [ on |- an
\ 0

to find E; we have to find the approximate expression for
the function exp[—7/u4], which is a solution of the equa~
tion (d1/d7) +1 = 0 with the boundary condition I(0,

4 >0) = 1. If we solve this equation in second approxi-
mation of the Ivon method, we obtain

o2ty 9 [

xexp [—T(3+ V3)|+

+(3—7/3) [ b

Y —1} exp [ — (83— 1/3_)1}}

From this we obtain (13). It then is not difficult to
find
1

G (1) = -;" E, (1) + V3 Ey(1)—
_21}? exp[—(3+ V31 (14)
6 ()= L [1—exp [—2@+ V)1
4 2031 V3 v
o6l 1—exp [—26=V1l) (15
3 2(3—1'3)
NOTATION

a is the particle radius; A is the radiation wave-
length; p is the quantity 27a/A; T is the optical thick-
ness; ® is the index of absorption of substance of
the particles; I isthe radiation intensity; r is the ratio
of the dispersion factor to attenuation factor; p is the co-
sine of the angle between 7-axis and the ray direction; Ep
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is the integroexponential function of n-th order; § is the
Dirac delta function; j is the source function; G is the
Green's function; g4(%) is the dimensionless energy of
radiation of a uniformly heated nonscattering layer
with optical thickness 7; &ty is the dimensionless en-
ergy of isotropic radiation passed through a layer
having optical thickness 7; epaq is the dimensionless
energy of radiation of a flat layer with optical thickness
T having a constant temperature.
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